

oWo-4o2q94)00857-4

Chemoselective Methyltrioxorhenium(VII)-Catalyzed Sulfoxidations with Hydrogen Peroxide

Waldemar Adam^{*}, Catherine M. Mitchell, Chantu R. Saha-Möller

Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

Abstract: The selective oxidation of sulfides to sulfoxides by hydrogen peroxide under methyltrioxorhenium(VII) **catalysis was examined; a high setcccivity of suifoxide over sulfone was achieved, except in the presence of water, which enhanced sulfonc formation.**

The selective **oxidation of sulfides to sulfoxides has been of continued interest, for which numerous methods** have been developed.') Transition metai-catalyzed sulfoxidations have been reported for oxidants such as hydrogen peroxide,²) iodosobenzene,^{2b}) iodylarenes,³) O₂/isobutyraldehyde,⁴) and ^tBuOOH.⁵) Furthermore, enzyme catalysis has been employed in a number of cases.⁶⁾

Methyltrioxorhenium (MTO) has been established as an efficient catalyst for the epoxidation and hydroxylation of olefins with hydrogen peroxide.⁷ MTO forms the mono- and diperoxo complexes **A** and **B** with H_2O_2 (Scheme 1), of which B has been structurally characterized by X-ray crystallography and proposed

Scheme 1

as the reactive oxygen-donating species for the epoxidation of alkenes on the basis of detailed mechanistic studies.^{7a}) Oxidations of arenes to *para*-quinones⁸) and alkynes to α , β -unsaturated ketones or 1,2-diketones^{7b}) and the Baeyer-Villiger rearrangement of ketones^{7b)} can be performed catalytically by MTO. Recently it was reported that organophosphorus compounds, triphenylarsine, and triphenylstilbine can be catalytically oxidized with H₂O₂ by using MTO as catalyst.⁹⁾ In addition, MTO has been used in the oxidation of a (thiolato)cobalt(III) complex by hydrogen peroxide.¹⁰⁾ The versatility of this novel organometallic catalyst is manifested by the fact that olefin metathesis¹¹ and the olefination of aldehydes with diazoalkanes¹² have been accomplished. Surprisingly, to date no sulfoxidations have been documented for the MTO/H₂O₂ oxidant.

As part of our broad-scope, metal-assisted oxidation program, we have subjected a selected set of sulfides to the catalytic oxidation by hydrogen peroxide with MTO as catalyst (Eq 1). The results are

summarized in Table 1. In the presence of catalytic amounts of MTO (ca. 1 mol%), sulfides are oxidized by

Entry	R ¹ SR ² (1)	H ₂ O ₂ (equiv.)	MTO (equiv.)	Time (h)	Conv.b) (%)	Ratio ^c)	
						R ₁ SOR ₂ (2)	$R^1SO_2R^2$ (3)
1	1a	1.0	0.01	24	> 95	71	29
$\overline{2}$	1 _b	1.0	0.01	24	73	97	3
3	1c	1.0	0.01	24	91	> 95	traces
4	1 _d	1.0	0.01	24	78	> 95	traces
5	1 _d	1.0	0.00	24	\leq 5	100	$\bf{0}$
6	1e	1.0	0.01	24	83	97	3
7	1 e	1.0	0.00	192	≤ 5	100	$\bf{0}$
8	1e	2.0	0.04	19	> 95	32	68
9	1 _e	2.0	0.01	19	> 95	50	50
10	1e	1.0 ^d	0.01	24	72	82	18
$\mathbf{11}$	1 e	1.0	0.01	33	84	74	26

Table 1. MTO-catalyzed oxidation of sulfides 1 with H_2O_2 a)

NMR scale reactions were carried out with 85% H₂O₂ in CDCl₃ at ca. 20 °C; D₂O was used as solvent for entry 11. a)

Mass balance > 95%. $b)$

c) Determined by ¹H NMR (250 MHz) analysis; crror ca. \pm 5% of the stated values; the ¹H NMR data of the sulfoxides 2 and sulfones 3 are in accordance with literature data. 1m), 13)

d) 11% H₂O₂ was used.

H₂O₂ smoothly and chemoselectively to sulfoxides in excellent yields. For instance, diphenyl sulfide (1c) gave almost exclusively the sulfoxide 2c in 91% conversion (Entry 3). Similar results were obtained for benzyl methyl sulfide (1d), albeit in slightly lower conversion (Entry 4). Dimethyl sulfide (1a), as expected, was the most reactive substrate and substantial amounts of sulfone were obtained at complete conversion of the sulfide (Entry 1); however, presumably for steric reasons, the di-tert.-butyl sulfide (1b) gave only small quantities (3%) of sulfone at 73% conversion under otherwise identical oxidation conditions (Entry 2). A good yield and excellent selectivity for the sulfoxide were obtained for sulfide le (Entry 6). Control experiments showed that an insignificant conversion of the sulfide occurred in the absence of MTO (Entries 5 and 7).

For more detailed investigations, thioanisole (1e) was chosen. Equimolar amounts of 1e and aqueous 85% Hz@ with 1 mol% of the MT0 catalyst gave the sulfoxide (2e) in high conversion (83%) of the sulfide and with excellent chemoselectivity (Entry 6). Larger amounts of the oxygen atom donor H_2O_2 and/or the catalyst (MTO) led to increased overoxidation to the sulfone 3e (Entries 8 and 9). A comparison of Entries 6, 10, and 11 reveals that more overoxidation occurred with a larger content of water in the reaction mixture, in stark contrast to recent results in the photooxidation of disulfides.¹⁴⁾ Possibly the enhanced electrophilicity of the sulfur atom in the sulfoxide due to hydrogen bonding with $H₂O$ is responsible.

The MTO-catalyzed sulfoxidation with hydrogen peroxide offers a convenient and efficient method for the selective synthesis of sulfoxides. It should be of interest to apply such MTO-catalyzed sulfoxidations enantioselectively on prochiral sulfides with the help of optically active ligands.

EXPERIMENTAL

General: The ¹H NMR spectra were recorded on a Bruker AC 250 spectrometer.

General Procedure for the Sulfoxidation: To a solution of the catalyst MT0 (0.002 - 0.005 mmol) in 0.6 ml CDCl₃ was added 85 % H₂O₂ (0.20 - 0.50 mmol). The resulting pale yellow emulsion was combined with the sulfide (0.20 - 0.50 mmol). The heterogeneous mixture was stirred at room temperature under an argon atmosphere for 19 - 192 h and the reaction mixture analyzed by ¹H NMR spectroscopy. The results are presented **in** Table I.

Acknowledgement. We thank Prof. Dr. W. A. Herrmann, Technische Universität München, Germany, for the generous supply of methyltrioxorhenium(VI1). Financial assistance by the *Deutsche Forschungsgemeinschufr* (SFB 347 "Selektive Reaktionen metallaktivierter Molekiile"). *Buyerischer Forschungsverbund Katalyse* (FORKAT), and the *Fends der Chemischen lndustrie* is appreciated.

REFERENCES

1. a) Madesclaire, M. *Terrahedron* 1986,42, 5459-5495. b) Balicki, R.; Kaczmarek, L.; Nantka-Namirski, P. *Liehigs Ann. Chem. 1992, 883-884. c)* Hirano, M.; Kudo, H.; Morimoto, T. Bull. *Chem. Sot. Jpn.* 1992,65, 1744-1746. d) Folsom, H. E.; Castrill6n, J. *Synrh.* Commun. 1992,22, 1799-1806. e) Davis, F. A.; Reddy, R. T.; Han, W.; Carrel, P. J. J. *Am. Chem. Sot.* 1992,114, 1428-1437. f) Rossi, C.; Fauve, A.; Madesclaire, M.; Roche, D.; Davis, F. A.; Reddy, R. T. *Tetrahedron* Asymrn. 1992,3, 629-636. g) Cordellicchio, C.; Fiandanese, V.; Naso, F. *J. Org. Chem.* 1992,57, 1718-1722. h) Choudary, B. M.; Rani, S. S. *J. Mof. Car.* 1992, 75, L7-L12. i) Pautet. F.; Daudon, M. *Tetrahedron Left.* 1991,32, 1457-1458. j) Menger, F. M.; Ebington, A. R. *J. Am. Chem. Sot.* 1991, 113, 9621-9624. k) Rabai. J.; Kapovits, I.; Tanacs, B.; Tamas, J. *Synthesis 1990, 847- 849. 1)* Naruta, Y.; Tani, F.; Maruyama, K. J. Chem. Sot., Chem. Commun. 1990, 1378-1380. m) Drabowicz, J.; Lyzwa, P.; Popielarczyk, M.; Mikolajczyk, M. *Synthesis* 1990, 937-938. n) Kim, K. S.; Hwang, H. 3.; Cheong, C. S.; Hahn, C. S. *Tetrahedron L&t.* 1990.31, 2893-2894. o) Firouzabadi, S.; Seddighi, S. *Synth. Commun.* 1991,21, 211-214. p) Roh. K. R.; Kim, K. S.; Kim, Y. H. *Tetrahedron Lctt. 1991,32, 793-796.*

- 2. a) Reddy, R. S.; Reddy, J. S.; Kumar, R.; Kumar, P. *J. Chem. Sot., Chem. Commun.* 1992. 84-85. b) Noda. K.; Hosoya, N.; Yanai, K.; Irie, R.; Katsuki, T. *Tetrahedron Lett. 1994.35, 1887-1890. c)* Palucki, M.; Hanson, P.; Jacobsen, E. N. *Tetrahedron Lett.* 1994, 35, 7111-7114.
- 3. Barret, R.; Pautet, F.; Bordat, P.; Tinland, B.; Daudon, M. Phosphorus, Sulfur, and Silicon, 1989, 45, 31-33.
- 4. Mastrorilli, P.; Nobile, C. F. *Tetrahedron Lett.* 1994, 35, 4193-4196.
- 5. a) Pitchen, P.; Kagan, H. B. *Tetrahedron Lett. 1984,25,* 1049-1052. b) Pitchen. P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. *J. Am. Chem. Sot. 1984,106,* 8188-8193. c) Zhao. S. H.; Samuel, 0.; Kagan, H. B. *Tetrahedron 1987,43. 5135-5144.* d) Komatsu, N.; Hashizume, M.; Sugita. T.; Kemura, S. J. Org. Chem. 1993, 58, 7624-7626.
- 6. a) Fu. H.; Kondo, H.; Ichikawa, Y.; Look, G. C.; Wong, C.-H. J. *Org. Chem. 1992.57, 7265-7270.* b) Colonna, S.; Gaggero, N.; Carrea, G.; Pasta, P. *J. Chem. Sot., Chem. Commun.* 1992, 357-358. c) Harris, R. Z.; Newmyer, S. L.; Ortiz de Montellano, P. R. *J.* Biol. *Chem.* 1993,268, *1637-1645.* d) Ozaki, S.-l.; Ortiz de Montellano, P. R. *J. Am. Chem. Sot. 1994,116, 4487-4488.*
- 7. a) Herrmann, W. A.; Fischer, R. W.; Scherer, W.; Rauch, M. U. Angew. Chem. 1993, 105, 1209-1212. b) Herrmann, W. A.; Fischer, R. W.; Marz, D. W. *Angew. Chem.* 1991, 103, 1706-1709. c) *Yu,* H.; Simon, H. *Tetrahedron 1991,47, 90359052.* d) Herrmann, W. A.; Fischer, R. W.; Rauch, M. U.; Scherer, W. .I. *Mol. Cat.* 1994.86, 243-266.
- 8. a) Adam, W.; Herrmann, W. A.; Lin, J.; Saha-Möller, C. R.; Fischer, R. W.; Correia, J. D. G. Angew. Chem. (submitted). b) Adam, W.; Herrmann, W. A.; Lin, J.; Saha-Möller, C. R. *J.Org.Chem.* (submitted). c) Adam, W.; Herrmann, W. A.; Saha-Möller, C. R.; Shimizu, M. *J Mol. Cat.* (submitted).
- 9. Abu-Omar, M. M.; Espenson, J. H. *Proceedings of the 9th International Symposium on Homogeneous Catalysis, 1994.*
- 10. Huston, P.; Espenson, J. H., Bakac, A*. Inorg. Chem.* **1993**, 32, 4517-4523
- 11. a) Herrmann, W. A.; Wagner, W.; Flessner, U. N.; Volkhardt, U.; Komber, H. Angew. Chem. 1991, 103, 1704-1706. b) Buffon, R.; Chaplin, A.; Leconte, M.; Basset, J. M.; Touroude, R.; Herrmann, W. A. *J. Mol. Cat.* 1992, 72, L7-LlO.
- 12. Herrmann, W. A.; Wang, M. *Angew.* Chem. 1991,103, 1709-1711.
- 13. a) Pretsch, E.; Clerc, T.; Seibl, J.; Simon*, W. Tabellen zur Strukturaufklärung organisch Verbindungen mit spektroskopischen Methoden;* Springer-Verlag: Berlin. 1986; p. **Hl** 10. b) The Aldrich Library of NMR Spectra, Volume X, Aldrich Chemical Company Inc.: Milwaukee. 1974; pp. 17 and 22. c) Evans, D. A.; Faul, M. M.; Colombo, L.; Bisaha, J. J.; Clardy, J.; Cherry, D. *J. Am. Chem. Sot.* 1992, 114, 5977-5985. d) Wu, S.-Y.; Toia, R. F.; Casida, J. E. *J. Agric. Food Chem. 1992, 40, 1425-1431. e)* Villemin, D.; Ben Alloum, A. *Synth. Commun.,* 1990,20, 925-932.
- 14. Clennan, E. L.; Wang, D.; Zhang, H.; Clifton, C. H. *Tetrahedron Lett.* **1994, 35, 4723-4726**

(Received in Germany 12 September 1994, *accepted* 28 *September* 1994)